This tool integrates 5 translation APIs and 8 mainstream Large Language Model (LLM) interfaces, allowing users to choose the most suitable translation method based on their needs:
| API Type | Quality | Stability | Use Case | Free Limit |
|---|---|---|---|---|
| DeepL(X) | ★★★★★ | ★★★★☆ | Suitable for long texts; smoother translation | 500,000 characters/month |
| Google Translate | ★★★★☆ | ★★★★★ | Suitable for UI interfaces, common sentences | 500,000 characters/month |
| Azure Translate | ★★★★☆ | ★★★★★ | Widest language support | First 12 months 2 million characters/month |
| GTX API (Free) | ★★★☆☆ | ★★★☆☆ | General text translation | Subject to rate limits (e.g., ~5 million chars every 3 hours) |
| GTX Web (Free) | ★★★☆☆ | ★★☆☆☆ | Suitable for small-scale translation | Free |
If you have higher requirements for translation speed and quality, you can apply for your own API Key. For application procedures, please refer to the relevant Interface Application Tutorial.
In addition to traditional translation APIs, this tool supports calling various LLMs for intelligent translation, including: DeepSeek, Nvidia, OpenAI, Gemini, Perplexity, Azure OpenAI, Siliconflow, Groq, OpenRouter, and highly configurable Custom LLMs.
To resolve Cross-Origin Resource Sharing (CORS) issues when calling official APIs directly from the browser, DeepL and Nvidia use built-in proxy services by default.
https://api-edgeone.newzone.top/api/nvidia) to forward requests.For users who wish to deploy and use custom large models locally (such as Ollama or LM Studio), you can connect this tool to your local model and resolve potential Cross-Origin Resource Sharing (CORS) issues using the methods below. To achieve better translation quality, it is recommended to use qwen3-14b or models with larger parameter scales (such as 32B, 70B) in your custom model setup.
The table below lists default interface addresses for common local model tools. You can use them directly in the configuration or modify them according to your actual port number.
| Tool | Default Interface Address |
|---|---|
| Ollama | http://127.0.0.1:11434/v1/chat/completions |
| LM Studio | http://localhost:61234/v1/chat/completions |
When calling a locally deployed model in a browser, if the connection fails, common causes include browser ad-blocking extensions or Cross-Origin Resource Sharing (CORS) restrictions. CORS policy is a browser security mechanism that prevents web pages from accessing resources from different origins arbitrarily. Therefore, when you request a local model interface from a web page, it may be blocked by the browser.
Step 1 | Check Ad/Privacy Plugins: Temporarily disable browser interception extensions, then refresh the page to test.
Step 2 | Enable Local Service CORS: Follow the guide below to allow cross-origin requests for common tools.
To enable CORS support for your locally running Ollama service, you can permanently enable it by setting an environment variable. Follow these steps:
Press Win + X and select Windows PowerShell or Terminal.
Paste the following command into the open PowerShell window and press Enter:
The
*wildcard allows all origins to access the Ollama interface. If you prefer stricter security controls, you can replace it with a specific domain, such ashttp://192.168.2.20:3000.
Once configured, restart the Ollama service for the changes to take effect.
If you only want to enable CORS temporarily, you can add the environment variable directly when starting the service:
After completing the above settings, this tool should be able to successfully call your local LLM model. If you still encounter access issues, check for port conflicts or error messages in the browser console. (Special thanks to mrfragger for sharing configuration experience).
This tool supports translation between 77 major languages.
Use the language codes below for batch multi-language configuration (e.g., en, zh, ja, ko):
| Code | Native | English | 中文 |
|---|---|---|---|
| en | English | English | 英语 |
| zh | 简体 | Simplified Chinese | 简体中文 |
| zh-hant | 繁體 | Traditional Chinese | 繁体中文 |
| es | Español | Spanish | 西班牙语 |
| de | Deutsch | German | 德语 |
| pt-br | Português (Brasil) | Portuguese (Brazil) | 葡萄牙语(巴西) |
| pt-pt | Português (Portugal) | Portuguese (Portugal) | 葡萄牙语(葡萄牙) |
| fr | Français | French | 法语 |
| ja | 日本語 | Japanese | 日语 |
| ko | 한국어 | Korean | 韩语 |
| ru | Русский | Russian | 俄语 |
| it | Italiano | Italian | 意大利语 |
| ar | العربية | Arabic | 阿拉伯语 |
| vi | Tiếng Việt | Vietnamese | 越南语 |
| hi | हिन्दी | Hindi | 印地语 |
| id | Bahasa Indonesia | Indonesian | 印尼语 |
| yue | 粵語 | Cantonese | 粤语 |
| nl | Nederlands | Dutch | 荷兰语 |
| sv | Svenska | Swedish | 瑞典语 |
| da | Dansk | Danish | 丹麦语 |
| nb | Norsk bokmål | Norwegian | 挪威语 |
| is | Íslenska | Icelandic | 冰岛语 |
| af | Afrikaans | Afrikaans | 南非荷兰语 |
| ro | Română | Romanian | 罗马尼亚语 |
| ca | Català | Catalan | 加泰罗尼亚语 |
| uk | Українська | Ukrainian | 乌克兰语 |
| pl | Polski | Polish | 波兰语 |
| cs | Čeština | Czech | 捷克语 |
| sk | Slovenčina | Slovak | 斯洛伐克语 |
| bg | Български | Bulgarian | 保加利亚语 |
| sr | Српски | Serbian | 塞尔维亚语 |
| hr | Hrvatski | Croatian | 克罗地亚语 |
| bs | Bosanski | Bosnian | 波斯尼亚语 |
| sl | Slovenščina | Slovenian | 斯洛文尼亚语 |
| mk | Македонски | Macedonian | 马其顿语 |
| be | Беларуская | Belarusian | 白俄罗斯语 |
| el | Ελληνικά | Greek | 希腊语 |
| hu | Magyar | Hungarian | 匈牙利语 |
| fi | Suomi | Finnish | 芬兰语 |
| lt | Lietuvių | Lithuanian | 立陶宛语 |
| lv | Latviešu | Latvian | 拉脱维亚语 |
| et | Eesti | Estonian | 爱沙尼亚语 |
| sq | Shqip | Albanian | 阿尔巴尼亚语 |
| mt | Malti | Maltese | 马耳他语 |
| hy | Հայերեն | Armenian | 亚美尼亚语 |
| ka | ქართული | Georgian | 格鲁吉亚语 |
| tr | Türkçe | Turkish | 土耳其语 |
| he | עברית | Hebrew | 希伯来语 |
| fa | فارسی | Persian | 波斯语 |
| ur | اردو | Urdu | 乌尔都语 |
| uz | Oʻzbekcha | Uzbek | 乌兹别克语 |
| kk | Қазақ тілі | Kazakh | 哈萨克语 |
| ky | Кыргызча | Kyrgyz | 吉尔吉斯语 |
| tk | Türkmençe | Turkmen | 土库曼语 |
| az | Azərbaycan | Azerbaijani | 阿塞拜疆语 |
| tg | Тоҷикӣ | Tajik | 塔吉克语 |
| mn | Монгол | Mongolian | 蒙古语 |
| bn | বাংলা | Bengali | 孟加拉语 |
| mr | मराठी | Marathi | 马拉地语 |
| ta | தமிழ் | Tamil | 泰米尔语 |
| te | తెలుగు | Telugu | 泰卢固语 |
| gu | ગુજરાતી | Gujarati | 古吉拉特语 |
| kn | ಕನ್ನಡ | Kannada | 卡纳达语 |
| ml | മലയാളം | Malayalam | 马拉雅拉姆语 |
| pa | ਪੰਜਾਬੀ | Punjabi | 旁遮普语 |
| ne | नेपाली | Nepali | 尼泊尔语 |
| bho | भोजपुरी | Bhojpuri | 博杰普尔语 |
| th | ไทย | Thai | 泰语 |
| lo | ລາວ | Lao | 老挝语 |
| my | မြန်မာ | Burmese | 缅甸语 |
| ms | Bahasa Melayu | Malay | 马来语 |
| fil | Filipino | Filipino(Tagalog) | 菲律宾语 |
| jv | Basa Jawa | Javanese | 爪哇语 |
| sw | Kiswahili | Swahili | 斯瓦希里语 |
| ha | هَرْشٜىٰن هَوْسَا | Hausa | 豪萨语 |
| am | አማርኛ | Amharic | 阿姆哈拉语 |
| ug | ئۇيغۇرچە | Uyghur | 维吾尔语 |
LLMs support all languages. Machine translation API language support: