Translation API Guide

This tool integrates 5 translation APIs and 8 mainstream Large Language Model (LLM) interfaces, allowing users to choose the most suitable translation method based on their needs:

Classic Translation APIs

API Type Quality Stability Use Case Free Limit
DeepL(X) ★★★★★ ★★★★☆ Suitable for long texts; smoother translation 500,000 characters/month
Google Translate ★★★★☆ ★★★★★ Suitable for UI interfaces, common sentences 500,000 characters/month
Azure Translate ★★★★☆ ★★★★★ Widest language support First 12 months 2 million characters/month
GTX API (Free) ★★★☆☆ ★★★☆☆ General text translation Subject to rate limits (e.g., ~5 million chars every 3 hours)
GTX Web (Free) ★★★☆☆ ★★☆☆☆ Suitable for small-scale translation Free
  • DeepL: Suitable for long texts, offering more fluid and natural translations, but does not support web-based API calls (requires local or server proxy).
  • Google Translate: Stable quality, suitable for short sentences and interface text; supports web-based calls.
  • Azure Translate: Supports the most languages, ideal for multi-language translation needs.
  • GTX API/Web: Free translation options suitable for lightweight use, but with limited stability and call frequency. For example, when mrfragger translated a subtitle file of about 2 million characters (~2MB), the GTX API limit was triggered after just two translation executions.

If you have higher requirements for translation speed and quality, you can apply for your own API Key. For application procedures, please refer to the relevant Interface Application Tutorial.

LLM Model Translation

In addition to traditional translation APIs, this tool supports calling various LLMs for intelligent translation, including: DeepSeek, Nvidia, OpenAI, Gemini, Perplexity, Azure OpenAI, Siliconflow, Groq, OpenRouter, and highly configurable Custom LLMs.

  • Use Case: Suitable for content requiring high language comprehension, such as literary works, technical documents, and multilingual materials.
  • Highly Customizable: Supports configuration of System Prompts and User Prompts, allowing flexible control over translation style and terminology preferences to meet diverse needs.
  • LLM Model: Generally, fill in the model name provided by the selected interface; if using Azure OpenAI, fill in the corresponding deployment name.
  • Temperature: Controls the creativity and stability of the translation results. The default value is 0.7. Suggestions: 0–0.3 for strict technical/terminology scenarios; 0.4–0.7 for general content; 0.8–1.0 for creative scenarios (e.g., marketing/paraphrasing).

API Proxy

To resolve Cross-Origin Resource Sharing (CORS) issues when calling official APIs directly from the browser, DeepL and Nvidia use built-in proxy services by default.

  • Default Behavior: When the API URL is empty, the tool automatically uses the built-in proxy (e.g., https://api-edgeone.newzone.top/api/nvidia) to forward requests.
  • Custom URL: If you specify a custom API URL in the settings (e.g., a private deployment or direct official address), the built-in proxy will be bypassed, and the request will be sent directly to your specified address.

Local Model Integration

For users who wish to deploy and use custom large models locally (such as Ollama or LM Studio), you can connect this tool to your local model and resolve potential Cross-Origin Resource Sharing (CORS) issues using the methods below. To achieve better translation quality, it is recommended to use qwen3-14b or models with larger parameter scales (such as 32B, 70B) in your custom model setup.

Common Interface Addresses

The table below lists default interface addresses for common local model tools. You can use them directly in the configuration or modify them according to your actual port number.

Tool Default Interface Address
Ollama http://127.0.0.1:11434/v1/chat/completions
LM Studio http://localhost:61234/v1/chat/completions

Solving CORS Issues

When calling a locally deployed model in a browser, if the connection fails, common causes include browser ad-blocking extensions or Cross-Origin Resource Sharing (CORS) restrictions. CORS policy is a browser security mechanism that prevents web pages from accessing resources from different origins arbitrarily. Therefore, when you request a local model interface from a web page, it may be blocked by the browser.

Step 1 | Check Ad/Privacy Plugins: Temporarily disable browser interception extensions, then refresh the page to test.

Step 2 | Enable Local Service CORS: Follow the guide below to allow cross-origin requests for common tools.

Ollama

To enable CORS support for your locally running Ollama service, you can permanently enable it by setting an environment variable. Follow these steps:

  1. Press Win + X and select Windows PowerShell or Terminal.

  2. Paste the following command into the open PowerShell window and press Enter:

    [System.Environment]::SetEnvironmentVariable('OLLAMA_ORIGINS', '*', 'User')

    The * wildcard allows all origins to access the Ollama interface. If you prefer stricter security controls, you can replace it with a specific domain, such as http://192.168.2.20:3000.

Once configured, restart the Ollama service for the changes to take effect.

If you only want to enable CORS temporarily, you can add the environment variable directly when starting the service:

OLLAMA_ORIGINS="*" ollama serve

LM Studio

  1. Open the left menu in the software and click the "Developer" icon.
  2. Enter the local server settings page and click "Settings" at the top.
  3. Check the "Enable CORS" checkbox (as shown below).

After completing the above settings, this tool should be able to successfully call your local LLM model. If you still encounter access issues, check for port conflicts or error messages in the browser console. (Special thanks to mrfragger for sharing configuration experience).

Language Support

This tool supports translation between 77 major languages.

Language Code Reference

Use the language codes below for batch multi-language configuration (e.g., en, zh, ja, ko):

Code Native English 中文
en English English 英语
zh 简体 Simplified Chinese 简体中文
zh-hant 繁體 Traditional Chinese 繁体中文
es Español Spanish 西班牙语
de Deutsch German 德语
pt-br Português (Brasil) Portuguese (Brazil) 葡萄牙语(巴西)
pt-pt Português (Portugal) Portuguese (Portugal) 葡萄牙语(葡萄牙)
fr Français French 法语
ja 日本語 Japanese 日语
ko 한국어 Korean 韩语
ru Русский Russian 俄语
it Italiano Italian 意大利语
ar العربية Arabic 阿拉伯语
vi Tiếng Việt Vietnamese 越南语
hi हिन्दी Hindi 印地语
id Bahasa Indonesia Indonesian 印尼语
yue 粵語 Cantonese 粤语
nl Nederlands Dutch 荷兰语
sv Svenska Swedish 瑞典语
da Dansk Danish 丹麦语
nb Norsk bokmål Norwegian 挪威语
is Íslenska Icelandic 冰岛语
af Afrikaans Afrikaans 南非荷兰语
ro Română Romanian 罗马尼亚语
ca Català Catalan 加泰罗尼亚语
uk Українська Ukrainian 乌克兰语
pl Polski Polish 波兰语
cs Čeština Czech 捷克语
sk Slovenčina Slovak 斯洛伐克语
bg Български Bulgarian 保加利亚语
sr Српски Serbian 塞尔维亚语
hr Hrvatski Croatian 克罗地亚语
bs Bosanski Bosnian 波斯尼亚语
sl Slovenščina Slovenian 斯洛文尼亚语
mk Македонски Macedonian 马其顿语
be Беларуская Belarusian 白俄罗斯语
el Ελληνικά Greek 希腊语
hu Magyar Hungarian 匈牙利语
fi Suomi Finnish 芬兰语
lt Lietuvių Lithuanian 立陶宛语
lv Latviešu Latvian 拉脱维亚语
et Eesti Estonian 爱沙尼亚语
sq Shqip Albanian 阿尔巴尼亚语
mt Malti Maltese 马耳他语
hy Հայերեն Armenian 亚美尼亚语
ka ქართული Georgian 格鲁吉亚语
tr Türkçe Turkish 土耳其语
he עברית Hebrew 希伯来语
fa فارسی Persian 波斯语
ur اردو Urdu 乌尔都语
uz Oʻzbekcha Uzbek 乌兹别克语
kk Қазақ тілі Kazakh 哈萨克语
ky Кыргызча Kyrgyz 吉尔吉斯语
tk Türkmençe Turkmen 土库曼语
az Azərbaycan Azerbaijani 阿塞拜疆语
tg Тоҷикӣ Tajik 塔吉克语
mn Монгол Mongolian 蒙古语
bn বাংলা Bengali 孟加拉语
mr मराठी Marathi 马拉地语
ta தமிழ் Tamil 泰米尔语
te తెలుగు Telugu 泰卢固语
gu ગુજરાતી Gujarati 古吉拉特语
kn ಕನ್ನಡ Kannada 卡纳达语
ml മലയാളം Malayalam 马拉雅拉姆语
pa ਪੰਜਾਬੀ Punjabi 旁遮普语
ne नेपाली Nepali 尼泊尔语
bho भोजपुरी Bhojpuri 博杰普尔语
th ไทย Thai 泰语
lo ລາວ Lao 老挝语
my မြန်မာ Burmese 缅甸语
ms Bahasa Melayu Malay 马来语
fil Filipino Filipino(Tagalog) 菲律宾语
jv Basa Jawa Javanese 爪哇语
sw Kiswahili Swahili 斯瓦希里语
ha هَرْشٜىٰن هَوْسَا Hausa 豪萨语
am አማርኛ Amharic 阿姆哈拉语
ug ئۇيغۇرچە Uyghur 维吾尔语

API Documentation

LLMs support all languages. Machine translation API language support: